
PUQ MauticImage not found or type unknown

This section contains instructions related to Docker modules, including setup, configuration, and
integration with various services.

Technical Disclaimer & Limitation of Liability
Installing Docker for PUQcloud modules
Client Container Concept and Structure
Why Does a Timeout Error Occur on the First SERVICE in WHMCS/WISECP?

Docker modules

By using any PUQ Docker modules, you acknowledge and agree that you are solely responsible
for the deployment, administration, maintenance, and security of your infrastructure. PUQcloud
assumes no liability for any issues arising from the use, misconfiguration, or failure of any PUQ
Docker module.

To use PUQ Docker modules, you must have the necessary expertise in system administration,
troubleshooting, and configuration, including but not limited to:

1. Linux Server Administration
You must have experience managing servers running Linux-based operating
systems.

2. Web Protocols & Proxy Management
Understanding web proxies, specifically Nginx proxy.
Knowledge of SSL certificate management and HTTP/HTTPS protocols.

3. Networking & Security
A solid understanding of networking protocols: TCP, UDP, DNS, HTTPS, and
any others relevant to your infrastructure.
You are responsible for implementing firewall rules, DDoS protection, access
control, and security hardening for all components of your system.

4. Containerization & Docker Management
Proficiency in Docker, including networking, container communication, and
orchestration.
You are responsible for securing your containers, including protection from
unauthorized access, vulnerabilities, and data leaks.

5. Bash Scripting & Automation
Experience with Bash scripting and Linux automation is required.
You must know how to create, mount, and unmount virtual disks.

6. Server & Infrastructure Management
You are fully responsible for managing your Docker server, including:

Performing regular backups and disaster recovery planning.
Monitoring server load and performance.
Troubleshooting and resolving any infrastructure-related issues.

You must develop your own automation scripts for migrations, system
recovery, and other administrative tasks.

Technical Disclaimer &
Limitation of Liability

Required Knowledge & Responsibilities

7. Software Maintenance & Updates
You are responsible for administering, restoring, and updating software
running within your Docker containers.
You must understand the responsibility boundaries between you, PUQcloud,
and third-party container providers.
If an update to our module or a third-party software breaks your configuration, you
are responsible for troubleshooting and resolving the issue.

PUQcloud only provides:

A billing system module for WHMCS or WISECP, with a pre-configured backend
automation set up in n8n.
Pre-configured template files for certain containers.

PUQcloud does NOT provide:

Any actual container images.
Any third-party software related to containers.
Any SaaS services—our solution only enables you to create SaaS services using
third-party containerized applications from public repositories.
Technical support for infrastructure, container management, or software
troubleshooting.

You must have a properly configured n8n server to import and manage workflows
for Docker and container automation.
You must understand how n8n works, and be able to configure and maintain
workflows independently.

No Guarantees or Warranties
PUQcloud provides its software "as is", with no guarantees of functionality,
security, compatibility, or performance in your specific infrastructure.
PUQcloud is not responsible for any data loss, downtime, financial loss,
business interruption, or security breaches resulting from the use or
misconfiguration of PUQ Docker modules.
We do not guarantee that updates to our software, third-party dependencies, or
operating systems will not cause disruptions or require manual intervention.

No Support for Customization or Debugging
PUQcloud does not provide free technical support for integration,
troubleshooting, or customization.
We are not responsible for any incompatibility or failure caused by modifications

Scope of PUQcloud's Responsibility

n8n Server Requirement

Limitation of Liability

made to our modules, configurations, or workflows.
Full Responsibility for Your Infrastructure

You are responsible for maintaining system security, backups, data integrity,
and service uptime.
You assume all risks related to:

Misconfiguration of services.
Software bugs or vulnerabilities.
Performance issues or failures.
Security breaches or unauthorized access.

Indemnification
By using PUQ Docker modules, you agree to fully indemnify PUQcloud and its
affiliates against any claims, damages, or liabilities arising from:

Your use or misuse of the software.
Any data loss, financial loss, or business impact.
Any third-party legal actions resulting from your service.

By using PUQ Docker modules, you confirm that:

1. You understand and accept full responsibility for the operation, maintenance, and
security of your infrastructure.

2. You have the necessary technical knowledge to manage Linux, networking,
Docker, and automation.

3. You will not hold PUQcloud liable for any technical failures, security breaches, data
loss, or business disruptions.

Final Acknowledgment

The WHMCS Docker n8n module requires a Debian 12 server with Docker installed to
function properly. This guide provides step-by-step instructions for setting up Docker and
configuring the necessary environment.

✔️ A physical or virtual machine running Debian 12
✔️ A public IP address for the server
✔️ A domain for web applications managed by the module
✔️ DNS Configuration: Create an A record pointing all subdomains to the server's IP:

Before installing Docker, update the system and install essential tools:

Installing Docker for
PUQcloud modules
Installing Docker on
Debian 12

�� Prerequisites

*.your_domain A server_ip

�� Installation Steps
1️⃣ Install Required Utilities

sudo apt-get update

Allow passwordless sudo access for the user connecting to the Docker server:

Edit the sudoers file:

Add the following line (replace your_username with your actual username):

sudo apt-get install sudo sqlite3 apache2-utils jq -y

2️⃣ Configure Sudo Access

sudo nano /etc/sudoers

your_username ALL=(ALL:ALL) NOPASSWD: ALL

3️⃣ Install Docker
Update package index

sudo apt update

Install dependencies

sudo apt install apt-transport-https ca-certificates curl software-properties-common

Add Docker’s official GPG key

curl -fsSL https://download.docker.com/linux/debian/gpg | sudo gpg --dearmor -o

/usr/share/keyrings/docker-archive-keyring.gpg

Add Docker repository

echo "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]

https://download.docker.com/linux/debian $(lsb_release -cs) stable" | sudo tee

/etc/apt/sources.list.d/docker.list > /dev/null

Update package list

sudo apt update

Install Docker

sudo apt install docker-ce

Verify Docker status

Create a Docker Compose file for nginx-proxy and Let's Encrypt companion:

Paste the following content:

sudo systemctl status docker

Install Docker compose

sudo apt install docker-compose-plugin

4️⃣ Deploy Required Containers

sudo mkdir -p /opt/docker/nginx-proxy

sudo mkdir -p /opt/docker/nginx-proxy/certs

sudo mkdir -p /opt/docker/nginx-proxy/nginx

sudo mkdir -p /opt/docker/nginx-proxy/html

sudo mkdir -p /opt/docker/nginx-proxy/vhost.d

cd /opt/docker/nginx-proxy

nano docker-compose.yml

version: "3"

services:

 nginx-proxy:

 image: jwilder/nginx-proxy

 container_name: nginx-proxy

 restart: always

 ports:

 - "80:80"

 - "443:443"

 volumes:

 - /opt/docker/nginx-proxy/certs:/etc/nginx/certs:ro

 - /opt/docker/nginx-proxy/nginx/vhost.d:/etc/nginx/vhost.d

 - /opt/docker/nginx-proxy/nginx/html:/usr/share/nginx/html

 - /var/run/docker.sock:/tmp/docker.sock:ro

 networks:

 - web

 letsencrypt:

 image: jrcs/letsencrypt-nginx-proxy-companion

Save and exit (CTRL + X , then Y , then ENTER).

Run the containers:

This setup provides:
✔️ nginx-proxy – Automatic HTTP/HTTPS proxy for container web interfaces
✔️ Let's Encrypt Companion – Automatic SSL certificate generation for subdomains

1. Confirm Docker is running:

docker ps

2. Verify nginx-proxy logs:

docker logs nginx-proxy

3. Ensure Let's Encrypt certificates are being generated correctly:

docker logs letsencrypt-nginx-proxy-companion

 restart: always

 container_name: letsencrypt-nginx-proxy-companion

 volumes:

 - /opt/docker/nginx-proxy/certs:/etc/nginx/certs:rw

 - /var/run/docker.sock:/var/run/docker.sock:ro

 volumes_from:

 - nginx-proxy

 networks:

 - web

networks:

 web:

 driver: bridge

docker-compose up -d

✅ Final Checks

In our deployment scenarios, we use Docker Compose for managing client containers.

The nginx-proxy directory must remain unchanged. Its path is:
/opt/docker/nginx-proxy

This directory contains essential components:

docker-compose.yml – Docker Compose configuration
certs/ – SSL certificates for domains
nginx/ – Nginx configuration files mounted into the container
html/ – Web root directory
vhost.d/ – Virtual host configurations

List of required directories:

/opt/docker/nginx-proxy
/opt/docker/nginx-proxy/certs
/opt/docker/nginx-proxy/nginx
/opt/docker/nginx-proxy/html
/opt/docker/nginx-proxy/vhost.d

Each client container has its own data directory. The base path for storing user-related Docker files
and disk images can be set individually for each n8n workflow involved in service management.

The clients_dir option defines the storage directory for user data.
Default path: /opt/docker/clients

Client Container Concept
and Structure
Container Deployment

Important Directories

Client Container Data Directories

Within this directory, subdirectories are created based on the primary domain name of the
service. The domain acts as a reference point for the entire service.

Each service directory contains:

docker-compose.yml – Service-specific Docker Compose configuration
status – A file storing the container status, which reflects the billing system state (e.g.,

active, suspended, etc.)
nginx/ – Nginx proxy configuration for the domain and container
data.img – Disk image for container data

Before a container starts, the data.img file is mounted into the system using n8n automation.

https://doc.puq.info/uploads/images/gallery/2025-03/image-1741877612840.png
https://doc.puq.info/uploads/images/gallery/2025-03/image-1741877565421.png

The necessary entries are added to /etc/fstab , ensuring that containers automatically restart
after a server reboot.

When ordering a service for the first time, Docker needs to download all the necessary containers
for the service to run. This process may cause timeout issues with WHMCS or WISECP modules.

To avoid potential timeout problems, we recommend downloading all required container images
before the first service deployment through the WHMCS or WISECP billing systems.

1. Identify all container images needed for the service.
2. Open a terminal or command prompt on the server where Docker is installed.
3. For each required image, run the following command:

Why Does a Timeout Error
Occur on the First SERVICE
in WHMCS/WISECP?
Instructions for Preparing Docker
Images Before First Service
Deployment

Background

Recommended Action

Steps to Follow:

docker pull [image_name]:[tag]

4. Verify that all images have been successfully downloaded by running:
docker images

5. Once all images are downloaded, proceed with the service deployment through WHMCS
or WISECP.

Reduces the risk of timeout errors during service deployment
Ensures a smoother first-time setup experience
Allows for faster service initialization

By following these instructions, you can preemptively address potential issues and ensure a more
reliable service deployment process.

Benefits

